VSL#3 probiotic modifies mucosal microbial composition but does not reduce colitis-associated colorectal cancer
نویسندگان
چکیده
Although probiotics have shown success in preventing the development of experimental colitis-associated colorectal cancer (CRC), beneficial effects of interventional treatment are relatively unknown. Here we show that interventional treatment with VSL#3 probiotic alters the luminal and mucosally-adherent microbiota, but does not protect against inflammation or tumorigenesis in the azoxymethane (AOM)/Il10⁻/⁻ mouse model of colitis-associated CRC. VSL#3 (10⁹ CFU/animal/day) significantly enhanced tumor penetrance, multiplicity, histologic dysplasia scores, and adenocarcinoma invasion relative to VSL#3-untreated mice. Illumina 16S sequencing demonstrated that VSL#3 significantly decreased (16-fold) the abundance of a bacterial taxon assigned to genus Clostridium in the mucosally-adherent microbiota. Mediation analysis by linear models suggested that this taxon was a contributing factor to increased tumorigenesis in VSL#3-fed mice. We conclude that VSL#3 interventional therapy can alter microbial community composition and enhance tumorigenesis in the AOM/Il10⁻/⁻ model.
منابع مشابه
Pretreatment with the probiotic VSL#3 delays transition from inflammation to dysplasia in a rat model of colitis-associated cancer.
Evidence supports involvement of microflora in the transition of chronic inflammation to neoplasia. We investigated the protective efficacy of the probiotic VSL#3 in a model of colitis-associated colorectal cancer. Chronic colitis was induced in Sprague-Dawley rats by administration of trinitrobenzene sulfonic acid (TNBS), followed 6 wk later by systemic reactivation. To induce colitis-associat...
متن کاملImmunoregulatory Mechanisms Underlying Prevention of Colitis-Associated Colorectal Cancer by Probiotic Bacteria
BACKGROUND Inflammatory bowel disease (IBD) increases the risk of colorectal cancer. Probiotic bacteria produce immunoregulatory metabolites in vitro such as conjugated linoleic acid (CLA), a polyunsaturated fatty acid with potent anti-carcinogenic effects. This study aimed to investigate the cellular and molecular mechanisms underlying the efficacy of probiotic bacteria in mouse models of canc...
متن کاملProbiotic Bacteria Produce Conjugated Linoleic Acid Locally in the Gut That Targets Macrophage PPAR γ to Suppress Colitis
BACKGROUND Inflammatory bowel disease (IBD) therapies are modestly successful and associated with significant side effects. Thus, the investigation of novel approaches to prevent colitis is important. Probiotic bacteria can produce immunoregulatory metabolites in vitro such as conjugated linoleic acid (CLA), a polyunsaturated fatty acid with potent anti-inflammatory effects. This study aimed to...
متن کاملMetabolic Variability of a Multispecies Probiotic Preparation Impacts on the Anti-inflammatory Activity
Background: In addition to strain taxonomy, the ability of probiotics to confer beneficial effects on the host rely on a number of additional factors including epigenetic modulation of bacterial genes leading to metabolic variability and might impact on probiotic functionality. Aims: To investigate metabolism and functionality of two different batches of a probiotic blend commercialized under t...
متن کاملProbiotics modify human intestinal mucosa-associated microbiota in patients with colorectal cancer.
Studies using animal models have demonstrated that probiotics may have a beneficial role in the prevention of colorectal cancer (CRC); however, the underlying mechanism of the beneficial effects of interventional probiotic treatment on gut microbiota has remained elusive. In the present study, pyrosequencing of the V3 region of the 16S rRNA genes was conducted in order to determine the extent t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2013